Acknowledgment. This research was supported by the National Cancer Institute DHEW (CA 13689-06).

References and Notes

(1) **K. C, Nicolaou, Tetrahedron, 33, 683 (1977).**

- (2) Recent reports in the literature have described the synthesis of selenol
esters by reaction of (a) carboxylic acid-imidazoles with aliphatic and
omatic selenois,^{3,4} (b) carboxylic acid-1,2,4-triazoles with selenois, carboxylic acid with benzeneselenenyl chloride or diphenyl diselenide in
the presence of tri-*n*-octylphosphine.⁵
- **(3)** H.-J. **Gais,** *Angew.* **Chem., Int.** *Ed. Engl.,* **16, 244 (1977). (4) G. S. Bates,** J. **Diakur, and** *S.* **Masamune, Tetrahedron Lett., 4423** (**197 7).**
-
- (5) See footnotes 3 and 17 in ref 6i.

(6) See footnotes 3 and 17 in ref 6i.

(6) For recent reports describing the synthesis of thiol esters see: (a) E. J. Corey

and D. J. Beames, J. Am. Chem. Soc., **95**, 5829 (1973); (
-
- (1976).
(8) P. A. Grieco and Y. Yokoyama, *J. Am. Chem. Soc.*, **99,** 5210 (1977).
(9) O. Behaghel and H. Seibert, *Ber.*, **65,** 812 (1932).
(10) K. Kottke, F. Friedrich, and R. Pohloudek-Fabini, *Arch. Pharm.*, **300,** 583
-
- **(11) F. Challenger,** C. **Higginbottom, and A. Huntington, J. Chem. SOC., 26** (1 **967).**
- **(1930).**
- **(12) Fellow of the Alfred** P. **Sloan Foundation**

Paul A. Grieco,*I2 Yuusaku Yokoyama Eric Williams

Department *of* Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania *15260* Received December *20,1977*

Favored Reduction of a-Chlorosilanes vs. a-Chloroalkanes with Tri-n-butyltin Hydride

Summary: The reduction of **l-chloro-2,2-dimethyl-2-sila**propane, neopentyl chloride, and **1,6-dichloro-2,2,5,5-tetra**methyl-2-silahexane with tri- n -butyltin hydride under freeradical conditions is described.

Sir: In 1965 it was suggested that α -silyl radicals may be specially stabilized compared to their all-carbon analogues, possibly by vicinal $(d-p)$ π overlap.¹ Such stabilization was invoked to explain the absence of rearrangement in α -silyl radicals.² Although ESR studies appear to confirm this stabilization,³ it seemed desirable to investigate it further. We describe here external and internal competition studies that show the heretofore unreported preferential reduction *of* $certain \alpha$ -chlorosilanes over their all-carbon analogues with tri-n-butyltin hydride. These results strongly suggest that some α -silyl radicals are indeed more stable than their allcarbon congeners.

In the external competition, mixtures of 1-chloro-2,2 dimethyl-2-silapropane ("silaneopentyl chloride", 1) and neopentyl chloride (2) were dissolved in dry benzene, sealed in ampules after degassing, and reduced with tri-n-butyltin hydride,⁴ using di-tert-butyl peroxide as the free-radical initiator. The results are given in Table I.

It may be seen that 1 is nearly two orders of magnitude faster in this reduction than is 2. Because the chlorine abstraction step (eq 1) determines the rate of these reductions, 5 it would appear that $(CH_3)_3SiCH_2$. (1.) is more easily formed than $(CH_3)_3CCH_2$. (2.) and therefore that 1 might be more **Table I. Competitive Reduction of 1 and** *2a*

^aOn **a** 10-20 mmol scale. In benzene at 151-152 "C for 20 h. Ratio of materials $(1 + 2)/\text{tri-n-butvltin hydride/di-tert-butvlt}$ peroxide = $10:3:1.$ ^b Competitive rate ratio, calculated from calibrated initial and final ¹H NMR spectra by a standard method (M. J. Hutchinson and M. W. Mosher, *J.* Chem. Educ., 48,629 (1971)). The results are for several runs and are ± 3 %. \cdot The reductions afforded tetramethylsilane from **1** and neopentane from 2, each in >90% yield. d Excess 2 was employed to increase the precision of the results.

stable than 2. External competition experiments can be misleading, however. The competitive rate ratio, which only measures the relative activation barriers, might actually reflect a less stable reactant $(i.e., 1)$ rather than a more stable intermediate (i.e., 1.).

measures the relative activation barriers, might actually reflect
\na less stable reactant (i.e., 1) rather than a more stable inter-
\nmediate (i.e., 1·).
\n
$$
(CH_3)_3 MCH_2Cl + {}^1Sn(n-C_4H_9)_3
$$
\n1, M = Si
\n2, M = C
\n
$$
{}^kCl
$$
\n
$$
{}^
$$

Because literature data applicable to the free-energy content of 1 appear to vary significantly,⁶ another approach to the selectivity in eq 1 was used, viz., internal competition. Here the problem of possible ground-state-energy differences between reactants disappears. The model chosen was 1,6-di**chloro-2,2,5,5-tetramethyl-2-silahexane (8).** Its synthesis (eq 2) commenced with the oxidation of the chloro alcohol **4** (Aldrich) to the chloro aldehyde **5:** pyridinium chlorochromate in methylene chloride;¹² 80% yield; bp \sim 100 °C (150 mm) (Kugelrohr); 2,4-DNP, mp $137-138$ °C. Anal. Calcd for $C_{11}H_{13}CIN_4O_4$: N, 18.63. Found: N, 18.69. Conversion of aldehyde **5** to olefin **6** was accomplished via the Wittig reaction: dimsyl sodium;13 methyltriphenylphosphonium bromide (or tosylate¹⁴); 30% yield; bp 108-109 °C (atm); ¹H NMR (CCl₄) $= 3$ Hz), 3.30 (s, -CH₂Cl), 1.10 (s, -CH₃); IR (neat) 3110, 1642, 928 (-CH=CH2), 1382, 1368 (CH3) cm-'. Anal. Calcd for $\rm C_6H_1$ Cl: C, 60.76; H, 9.35. Found: C, 61.08; H, 9.50. Addition of silane 715 to 6 in the presence of chloroplatinic acid afforded 8: 71% yield, collected by GLC on DC-200 at 150 °C; ¹H NMR $(CCl₄)$ δ 3.33 (s, \geq CCH₂Cl), 2.73 (s, \geq SiCH₂Cl), 1.53-1.17 (m, $>\text{SiCH}_2\text{CH}_2\text{C}$), 0.97 (s, $>\text{C}(\text{CH}_3)_2$), 0.70-0.30 (m, \Rightarrow SiCH₂CH₂C \leq), 0.13 (s, $>$ Si(CH₃)₂); IR (neat) 1390, 1370 $(>C(CH_3)_2)$, 1260 $(Si(CH_3)_2)$ cm⁻¹. Anal. Calcd for $C_9H_{20}Cl_2Si: C, 47.57; H, 8.87.$ Found: C, 47.83; H, 8.89. δ 5.83, 5.12, 4.90 (-CH=CH₂) (ABX, $J_{\text{trans}} = 18, J_{\text{cis}} = 9, J_{\text{gem}}$

$$
ClCH2C(CH3)2CH2OH
$$

0022-3263/78/1943-1285\$01.00/0 *0* 1978 American Chemical Society

A sample reduction of 8 is described. In an NMR tube were placed 8 **(45** mg, 0.198 mmol), tri-n-butyltin hydride (freshly prepared,16 61 mg, 0.209 mmol), azobisisobutyronitrile (Aldrich, 10 mg), and benzene (distilled Spectrograde material, $300 \mu L$). Nitrogen was bubbled through the material briefly and the tube was capped. The solution was then irradiated in a small irradiation apparatus (Bradford Scientific Co.) at 366 nm and 37 "C (ambient) for 6.5 h. Processing the mixture directly by GLC (DC-200, 150 "C) afforded **9** in essentially quantitative yield based upon consumed reactants (94% reaction), with $\leq 5\%$ (if any) of 10, along with benzene and tri n -butyltin chloride (eq 3).¹⁷ For confirmation of their struc-

$$
(CH3), SiCH2CH2C(CH3),2CH2Cl
$$

9
8 + HSn(C₄H₉), $\frac{AIBN}{\text{benzene}}$
CICH₂Si(CH₃),CH₂CH₂CH₂CH₂CH₂CH₃),

tures, chlorosilanes **9** and 10 were synthesized by the routes shown in eq 4. Chloro silane **9** was identical (spectra, GLC)

6 + HSi(CH₃)₂Cl¹⁵
\n
$$
H_2PtCl_6
$$

\n $CH_1 = CHC(CH_3)_3^{15} + 7$
\n H_2PtCl_6
\n H_2PtCl_6
\n H_3Li , ether (4)
\n $10 (79\%)$ 9 (21% from 6)

with the reduction product: ¹H NMR (CCl₄) δ 3.30 (s, $-CH_2Cl$), 1.53-1.17 (m, \geq SiCH₂CH₂C \leq), 1.0 (s, \geq C(CH₃)₂), 0.67-0.23 (m, $>SiCH_2CH_2C<$), 0.07 (s, $>Si(CH_3)_3$); IR (neat) 1383, 1367 ($>C(CH_3)_2$), 1252, 840-870 ($>Si(CH_3)_3$) cm⁻¹. Anal. Calcd for C₉H₂₁ClSi: C, 56.06; H, 10.98, Found: C, 55.72; H, 10.96. Chlorosilane 10 was distinguished from its isomer **9** most readily by its NMR spectrum: ¹H NMR (CCl₄) δ 2.73 (s, -CH₂Cl), 1.40-1.03 (m, \geq SiCH₂CH₂C \leq), 0.90 (s, $-C(CH₃)₃$, 0.77-0.32 (m, \geq SiCH₂CH₂C \leq), 0.12(s, $>$ Si(CH₃)₂); IR (neat) 1392, 1362 ($-C(CH_3)_3$), 1252 ($>Si(CH_3)_2$) cm⁻¹. Anal. Calcd for C₉H₂₁ClSi: C, 56.06; H, 10.98. Found: C, 55.67; H, 10.74.

Work is in progress on the reduction of other α -chlorosilanes and α -chloroalkanes, both by external and internal competition techniques, to establish the generality of the present findings.

References and Notes

- (1) J. W. Wilt and 0. Kolewe, *J.* Am. Chem. *Soc.,* 87, 2071 (1965). (2) J. W. Wilt, 0. Kolewe, and J. F. Kraemer, *J.* Am. Chem. Soc., **91,** 2624
- (1969).
- (3) P. J. Krusic and J. K. Kochi, J. Am. Chem. **SOC., 91,** 6161 (1969).
- (4) H. G. Kulvila, *Acc.* Chem. Res., **I,** 299 (1968). (5) D. J. Carlsson and K. U. Ingold, J. Am. Chem. **Soc., 90,** 7047 (1968).
- E.g., the standard heat of formation of tetramethyisilane (a value needed
to calculate the energy content of **1** by the method of O'Neal and Ring⁷)
has literature values of: $-26,^8$ -33,⁹ -68,¹⁰ -69,¹¹ and -73⁷
-
-
-
- mol⁻⁻¹.
H. O'Neal and M. Ring, *Inorg. Chem.*, **5,** 435 (1966).
M. Tribble and N. Allinger, *Tetrahedron*, **28**, 2147 (1972).
P. Potzinger and F. Lampe, *J. Phys. Chem.*, **74**, 719 (1970).
S. Band, I. Davidson, and C. La
-
- R. Greenwald, **M.** Chaykovsky, and E. J. Corey, *J.* Org. Chem.. **28,** 1128 (1963).
- D. Klamann and P. Weyerstahl, Angew, Chem., 75, 89 (1963).
- D. Seyferth and **E.** G. Rochow, *J.* Am. Cbem. **SOC.,** 77, 907 (1955). **H.** G. Kuivila and 0. **F.** Beumel, Jr., *J.* Am. Chem. *Soc.,* **83,** 1246 (1961).
- Control experiments showed that **5%** of **10** in **9** could be easily observed by **'H** NMR analysis. Analysis by **IR** or GLC was less useful. Work in prog-ress on larger scale reactions will establish the extent of formation of 10.
- Obtained from Silar Laboratories.
- Obtained from Aldrich Chemical Co.
- A portlon of this work comes from the M. S. Thesis of P.M.A.. Loyoia Uni- (20) versity of Chicago, 1974.

James W. Wilt,* Peter M. Aznavoorian²⁰

Department of Chemistry Loyola Uniuersity of Chicago Chicago, Illinois 60626 Received January 6,1978